Científicos crean una extraña fase de la materia en ordenador cuántico en la que el tiempo tiene dos dimensiones. (Foto: Envato)

La extraña fase del ordenador cuántico que divide el tiempo en dos dimensiones

Compartir en:
Para evitar la pérdida de información en los ordenadores cuánticos, los físicos han creado una posible vía utilizando pulsos láser sobre sus qubits –con un patrón inspirado en la secuencia de Fibonacci en los átomos dentro de un ordenador cuántico– que crean una simetría en el tiempo y no en el espacio, y lo hacen en dos dimensiones temporales.

Así, la notable y extraña fase de la materia, nunca antes vista, tiene las ventajas de dos dimensiones temporales a pesar de que solo existe un flujo de tiempo singular, informaron los físicos en Nature.

Según los científicos, este rasgo de esta peculiaridad de la mecánica cuántica hace que los qubits sean más robustos, capaces de permanecer estables durante todo el experimento, donde la información puede existir sin confundirse durante mucho más tiempo, un hito importante para hacer viable la computación cuántica.

Esta estabilidad se denomina coherencia cuántica y es uno de los principales objetivos de un ordenador cuántico sin errores, y uno de los más difíciles de conseguir. Así, este avance podría suponer una gran a mejoría en comparación con las configuraciones convencionales utilizadas actualmente en los ordenadores cuánticos.

El trabajo representa "una forma completamente diferente de pensar en las fases de la materia", afirmó el físico cuántico computacional Philipp Dumitrescu, del Instituto Flatiron, autor principal de un nuevo artículo que describe el fenómeno.

"Llevo más de cinco años trabajando en estas ideas teóricas, y ver que se hacen realidad en los experimentos es emocionante", agregó. Así, crearon una línea de 10 iones de iterbio, cada uno de los cuales es mantenido por campos eléctricos en una trampa de iones y puede servir como un "qubit" individual.

No obstante, hay un problema con los actuales qubits para almacenar y manejar la información: la interacción entre qubits y su entorne puede alterar sus estados, lo que provoca problemas y errores. En otras palabras, la naturaleza borrosa e inestable de una serie de qubits depende, entre otras, de cómo se relacionan sus estados indecisos entre sí, una relación llamada entrelazamiento.

"Aunque se mantengan todos los átomos bajo un estricto control, pueden perder su carácter cuántico al hablar con su entorno, calentarse o interactuar con cosas de forma no prevista", explica Dumitrescu. "En la práctica, los dispositivos experimentales tienen muchas fuentes de error que pueden degradar la coherencia tras unos pocos pulsos de láser".
Compartir en: